Лед на комете 67P возрастом 4,5 миллиарда лет «пушистее, чем пена для капучино»
После многих лет детективной работы ученые, работавшие над миссией Европейского космического агентства (ESA) Rosetta, теперь смогли определить, где посадочный модуль Philae совершил второй и предпоследний контакт с поверхностью кометы 67P/Чурюмова-Герасименко 12 ноября 2014 года, прежде чем наконец остановиться в 30 метрах от него. За этой посадкой следили из Немецкого аэрокосмического центра (Deutsches Zentrum für Luft- und Raumfahrt; DLR) из центра управления Philae.<br>Филы оставили следы на поверхности; посадочный модуль прижался верхней частью и корпусом с буром к черной ледяной каменистой местности, покрытой углеродистой пылью. В результате аппарат поцарапал «поверхность», обнажив лед, появившийся с момента образования кометы, который с тех пор был защищен от солнечного излучения. Яркая ледяная поверхность, очертания которой чем-то напоминают череп, теперь обнаружена как точка соприкосновения аппарата с поверхностью, пишут исследователи в научном издании Nature.<br>Все, что было известно ранее, - это место первого контакта, что после отскока произошел еще один удар, и местоположение последней точки приземления, где Philae остановился через два часа и где он был обнаружен ближе к концу миссии Розетты в 2016 году.<br>«Теперь мы наконец знаем точное место, где Филы приземлилась на комете во второй раз. Это позволит нам полностью реконструировать траекторию посадочного модуля и получить важные научные результаты на основе данных телеметрии, а также измерений некоторых инструментов, работающих во время процесса посадки», - объясняет Жан-Батист Винсент из Института планетных исследований DLR, который был участником исследования.<br>«Philae оставил нам одну последнюю загадку, ожидающую решения», - говорит Лоуренс О"Рурк из ESA, ведущий автор исследования. Команда ученых была мотивирована провести многолетний поиск «TD2», второй точки приземления: «Было важно найти место приземления, потому что сенсоры на аппарате показывали, что он зарылся в поверхность, скорее всего, обнажая примитивный лед, скрытый под пылью».<br>В течение последних нескольких лет это место искали, как иголку в стоге сена, на многочисленных изображениях и данных с места приземления Philae.<br><b>Магнитометр дал решающие показания</b><br>В течение долгого времени и безрезультатно ученые неоднократно искали пятна голого льда в предполагаемой области, используя изображения с высоким разрешением, полученные с помощью системы оптической, спектроскопической и инфракрасной съемки (OSIRIS), разработанной Институтом солнечной энергетики им. Макса Планка. Но именно оценка измерений, выполненных с помощью магнетометра и плазменного монитора ROsetta (ROMAP), созданного для Philae под руководством Технического университета Брауншвейга, направила ученых на верный путь.<br><img src="https://www.astronews.ru/foto/b/20201106233923.jpg" width="90%"><br>В данных команда исследовала изменения, которые произошли, когда стрела магнитометра, выступающая на 48 сантиметров от посадочного модуля, двигалась при ударе о поверхность, что показало, что она изогнулась. Это создало характерную закономерность в данных прибора ROMAP компании Philae, который показал, что стрела перемещалась относительно Philae, и позволил оценить продолжительность проникновения спускаемого аппарата в лед. Данные ROMAP были сопоставлены с данными магнитометра Rosetta RPC для определения точной ориентации Philae.<br>Анализ данных показал, что Philae провел почти две полных минуты - что не является необычным в этой среде с очень низкой гравитацией - во второй точке контакта с поверхностью, сделав по крайней мере четыре различных контакта с поверхностью, когда спускаемый аппарат «бороздил» пересеченный ландшафт.<br>Особенно замечателен оставленный отпечаток, который стал виден на изображениях, когда вершина Philae погрузилась на 25 сантиметров в лед со стороны открытой трещины, оставив видимые следы от буровой установки и верхней части посадочного модуля. Пики в данных магнитного поля в результате движения стрелы показывают, что Philae потребовалось три секунды, чтобы сделать эту конкретную «вмятину».<br><b>Скульптура из голого кометного льда в форме черепа</b><br>Данные ROMAP подтвердили открытие этого участка с заполненной льдом яркой открытой трещиной на изображениях с OSIRIS. Если смотреть сверху, это напомнило исследователям череп, поэтому они назвали точку контакта «Хребет на вершине черепа». Правый глаз черепа образовался там, где верхняя сторона аппарата сжала кометную пыль, а затем полетел дальше как ветряная мельница, только для того, чтобы, наконец, снова взлететь и покрыть последние несколько метров до своего места - место последнего упокоения.<br>«В то время данные показали, что Philae несколько раз контактировал с поверхностью и, наконец, приземлился в плохо освещенном месте. Мы также знали примерное место окончательной посадки по измерениям радара CONSERT. Однако точную траекторию Philae и точки соприкосновения невозможно было так быстро интерпретировать», - вспоминает руководитель проекта Philae Стефан Уламек из DLR.<br>Оценка изображений OSIRIS вместе с изображениями, полученными с помощью видимого и инфракрасного тепловизионного спектрометра (VIRTIS), подтвердила, что яркий материал представляет собой чистый водяной лед, который подвергся воздействию поверхностного контакта Philae на площади 3,5 квадратных метра.<br>Во время этого контакта регион все еще находился в тени. Лишь несколько месяцев спустя на него упал солнечный свет, поэтому лед все еще ярко сиял на Солнце и был едва засыпан космической пылью. Только лед, состоящий из других летучих веществ, таких как оксид углерода или диоксид углерода, испаряется.<br><b>Комета 67P полна пустот</b><br>Эта реконструкция событий сама по себе является сложной детективной работой, но первое прямое измерение плотности кометного льда также дает важные выводы. Параметры контакта с поверхностью показали, что эта древняя смесь льда и пыли возрастом 4,5 миллиарда лет чрезвычайно мягкая - она ​​более пушистая, чем пена в капучино, пена в ванной или белые шапки волн, встречающихся на побережье.<br>«Механическое напряжение, которое удерживает лед кометы в этом куске пыли, составляет всего 12 паскалей. Это не более чем «ничего», - объясняет Жан-Батист Винсент, изучающий прочность на сжатие и растяжение «примитивного» льда. Этот лед хранился в кометах 4,5 миллиарда лет, как в космической морозильной камере, что свидетельствует о самом раннем периоде существования Солнечной системы.<br>Исследование также позволило оценить пористость «камня», к которому прикоснулся Philae. Примерно 75 процентов состоит из пустот. Таким образом, «валуны», вездесущие на изображениях, больше сравнимы с камнями из пенополистирола в фантастическом пейзаже киностудии, чем с реальными твердыми массивными камнями. В другом месте скала шириной шесть метров, видимая на нескольких снимках, даже изогнулась горбом из-за давления газа от испаряющегося кометного льда.<br>Эти наблюдения подтверждают результат полета орбитального аппарата Rosetta, который дал аналогичное числовое значение для доли пустот и показал, что внутренняя часть 67P/Чурюмова-Герасименко должна быть однородной вплоть до размера блока в один метр. Это приводит к выводу, что «валуны» на поверхности кометы отражают общее состояние ее внутренней части, поскольку она была сформирована приблизительно 4,5 миллиарда лет назад.<br>Результат не только имеет научное значение для характеристики комет, которые наряду с астероидами являются самыми первобытными телами в Солнечной системе, но также поддерживает планирование будущих миссий по посещению комет и сбору образцов для возвращения их на Землю. Такие миссии в настоящее время рассматриваются.<br><b>12 ноября 2014 г. - Первое приземление кометы</b><br>Philae осторожно отделился от своего космического корабля Rosetta во второй половине дня (CET) 12 ноября 2014 года и спустился в направлении кометы 67P/Чурюмова-Герасименко. Как позже показали изображения с камеры системы обработки изображений ROsetta Lander Imaging System (ROLIS) DLR , посадочный модуль объемом примерно один кубический метр почти идеально попал в запланированную посадочную площадку Agilkia.<br>Однако Philae не смог закрепиться на комете 67P, потому что якорные гарпуны, предназначенные для этого, не активировались. Поскольку сила тяжести кометы на своей поверхности составляет лишь около одной стотысячной силы тяжести на Земле, Филы отскочили от кометы, поднялся на высоту одного километра и парили над областью Хатмехит.<br>Спустя более двух часов Philae снова установил контакт с кометой 67P. Данные, переданные Розетте в течение двух часов, показали, что посадочный модуль остановился после турбулентного подпрыгивающего полета, сильного столкновения с краем утеса и двух дальнейших контактов с поверхностью. Чуть позже Philae также смог передать изображения места посадки, названного Abydos, на Землю через Rosetta.<br>Эти изображения быстро показали, что посадочный модуль теперь находится в не благоприятном месте с минимальным количеством солнечного света. Для команды в диспетчерской DLR работа началась после неожиданной посадки: они эксплуатировали посадочный модуль почти 60 часов, управляя его 10 бортовыми приборами и, наконец, слегка повернули его к Солнцу.<br>Тем не менее, основная батарея разрядилась, потому что аппарат производил слишком мало энергии. Батареи не достаточно заряжались, потому что Солнце светило на Philae чуть менее 1,5 часов в течение каждых 12,4-часовых кометных суток. Фактически, команда Rosetta из нескольких сотен человек провела 22 месяца, ломая голову над тем, где на самом деле находится Philae.<br>Только крупный план, сделанный камерой OSIRIS за несколько недель до окончания миссии 2 сентября 2016 года, показал, что Philae застрял в вертикальном положении в своего рода расщелине под навесом, заслоняющим солнечный свет. По окончании миссии космический корабль Rosetta также был сведен на 67P/Чурюмова-Герасименко в ходе последнего маневра 30 сентября 2016 года.<br>Статья была опубликована 28 октября 2020 года в журнале Nature: «Посадочный модуль Philae обнаруживает примитивный лед низкой прочности внутри кометных валунов».