Лазерный химический анализатор разместили на микрочипе
Ученые из Российского квантового центра, Политехнической школы Лозанны (EPFL), МГУ и МФТИ разработали процесс производства компактных лазерных химических анализаторов на базе оптических гребенок, совместимый со стандартными технологическими процессами, которые используются для производства «обычной» электроники. Статья ученых опубликована в журнале Nature Communications.
Оптические частотные гребенки, за создание которых в 2005 году была присуждена Нобелевская премия по физике, используются как основа для устройств, способных генерировать последовательность фемтосекундных импульсов света. Их излучение имеет спектр в виде «гребенки», то есть множества узких спектральных линий, разделенных равными частотными промежутками. Такие лазерные «линейки» можно использовать для телекоммуникации, в спутниковой навигации, в астрофизике. В частности, с их помощью можно проводить очень точные и быстрые спектроскопические измерения и, следовательно, определять химический состав веществ. Но широкое применение устройств на основе оптических гребенок ограничено из-за их сложности, большого размера и высокой стоимости.
«Вся система может уместиться в объеме менее кубического сантиметра и, что самое важное, требует источник тока мощностью лишь 1 ватт — то есть обычную батарейку. Совместимость со стандартными технологиями производства электроники, простота оптической схемы и низкая стоимость делают эту систему крайне привлекательной для массового производства», — говорит один из ведущих авторов исследования Андрей Волошин.
Проще всего генерировать такие гребенки можно с помощью микрорезонаторов, «колец» или дисков из оптических материалов, где излучение лазера накачки из-за нелинейности материала превращается в частотную гребенку. Ранее группа под руководством ныне покойного профессора МГУ Михаила Городецкого, основавшего лабораторию когерентной микрооптики и радиофотоники в РКЦ, разработала метод генерации частотных гребенок в микрорезонаторах с помощью дешевых и компактных лазерных диодов вместо дорогих монохроматических лазерных систем. Эта работа, опубликованная в Nature Photonics в 2018 году, открыла дорогу к созданию дешевых и компактных лазерных спектрометров.
Теперь эта же группа продемонстрировала новый способ генерации гребенок с использованием исключительно интегральных элементов. Это означает, что для создания оптической схемы необязательно использовать отдельные оптические элементы, такие как линзы, призмы и зеркала, как это делалось в оптике обычно и что крайне неудобно, когда вам нужно организовать массовое производство миниатюрных оптических устройств. Современные литографические технологии позволяют создавать специальные волноводы для лучей света. Излучение лазеров может генерироваться в таких волноводах, делиться на разные каналы, проходить через специальные фильтры и так далее. Фактически маленький диод в лазерной указке и есть кусочек такого волновода. Важно, что такие волноводы могут быть изготовлены с помощью стандартной КМОП-технологии (комплементарный металл–оксид–полупроводник), используемой в промышленных масштабах для производства электронных микросхем.
В дальнейшем ученые планируют разработать компактный спектрометр, многочастотный источник узкополосного лазерного излучения. Для этого необходимо развить технологию производства фотонных интегральных устройств.