Германские физики определят вес самой легчайшей материи во Вселенной
На этой неделе в Германии начал работу эксперимент KATRIN, в рамках которого ученые из Технологического института Карлсруэ попытаются определить массу нейтрино, легчайшей формы материи во Вселенной, сообщает пресс-служба заведения. Нейтрино представляют собой мельчайшие элементарные частицы, которые "общаются" с окружающей материей только посредством гравитации и так называемых слабых взаимодействий, проявляющихся лишь на расстояниях, существенно меньше размеров ядра атома. В середине прошлого века ученые открыли три вида таких частиц — тау, мюонные и электронные нейтрино и их "злые близнецы"-антинейтрино. Наблюдения за Солнцем в 1960 годах и эксперименты нобелевских лауреатов Артура Макдональда и Такааки Каджиты раскрыли две важные вещи – то, что нейтрино разных видов умеют периодически превращаться друг в друга – этот процесс ученые называют "осцилляциями" и то, что они обладают ненулевой массой. С тех пор ученые наблюдают за этим процессом, пытаясь вычислить массу нейтрино по тому, как "охотно" разные типы этих частиц превращаются в два других их вида. Германские физики решили подойти к этой проблеме с обратной стороны – в рамках эксперимента KATRIN они попытаются вычислить массу "неуловимых" частиц при помощи своеобразного метода исключения. Ключом к ней служат атомы трития – тяжелого изотопа водорода, в ядре которого содержится два нейтрона и один протон. Тритий нестабилен по своей природе, и со временем он превращается в гелий-3, испуская при этом один электрон и электронное антинейтрино. В соответствии с законом сохранения энергии, "осколки" распавшегося ядра будут иметь в сумме ту же энергию, что и оно само, что позволяет вычислить массу неизвестной частицы, замеряя массы других фрагментов деления. Руководствуясь этой простой идеей, немецкие ученые собрали гигантский "чан" с водой, покрытый специальными фотодетекторами и источниками магнитных полей, в начале которого находится небольшая емкость с тритием. Когда ядро тяжелого водорода распадается, рождающийся в результате этого электрон "подхватывается" магнитными полями и отправляется на специальный детектор, который измеряет его массу. Подобные измерения, по текущим планам физиков, будут идти около пяти лет, что позволит накопить достаточно данных для того, чтобы измерить массу электрона с точностью, превышающей 0,2 электронвольт (один электронвольт – величина энергии, примерно эквивалентная массе в 10 в минус 36 степени килограмм). Столь высокая точность измерений нужна ученым по той причине, что масса нейтрино крайне мала – последние эксперименты на детекторе KamLAND-Zen показывают, что эти частицы могут весить в несколько раз или даже в десятки раз меньше, чем предполагаемая их масса – около 1-2 электронвольт. Несмотря на столь высокие требования, участники проекта, как передает журнал Symmetry, настроены оптимистично и ожидают получить первые результаты уже в 2017 году. Позже к подобным измерениям могут подключиться американские ученые, занимающиеся схожими, но несколько другими экспериментами с тритием в рамках проекта Project 8. Его чувствительность в теории будет выше, чем у KATRIN, однако данный детектор еще только вступил в первые фазы проектирования и постройки.