В МГУ разработали систему проверки защищённости ИИ-продуктов
Сотрудники Центра компетенций Национальной технологической инициативы (ЦК НТИ) по большим данным, действующего на базе МГУ, разработали решение для проверки устойчивости ИИ-систем к кибератакам.
Как выяснил RT, платформа предоставляет возможность загрузки моделей машинного обучения в облако, где они в автоматическом режиме проходят тестирование. На выходе пользователь получает не только оценку, но также дообученный вариант, способный исправно работать в условиях различных внешних воздействий и изменений.
Созданное в МГУ решение пригодно для проверки любых систем, построенных на основе нейросетевых языковых моделей. Авторы считают, что их разработка окажется особенно полезной в применении к автопилотам грузовых автомобилей и поездов, системам идентификации по фото, видео, голосу, а также системам распознавания текста в аудиосообщениях: такие ИИ-помощники наиболее часто подвергаются кибератакам.
Команда ЦК НТИ создала прототип сервиса проверки и уже работает с рядом крупных российских клиентов над повышением устойчивости их ИИ-продуктов.
«В последние годы с активным внедрением систем ИИ в повседневную жизнь — например, голосовых банковских помощников, автопилотов, сервисов медицинской диагностики, систем идентификации на транспорте — стало понятно, что тематика устойчивости к атакам скоро станет очень востребована», — отметил Денис Гамаюнов, доцент факультета ВМК МГУ.
По мнению эксперта, в ближайшие годы рынок средств защиты систем ИИ возрастет в несколько раз.
«Безусловно, защита серверов, на которых запущен код ИИ, важна, но злоумышленникам интереснее скорее нарушить, а не прекратить его работу, чтобы тот выдавал некорректные решения, — комментирует Сергей Полунин, руководитель группы защиты инфраструктурных ИТ-решений компании «Газинформсервис». — Например, если хакеры доберутся до обучающей выборки и сумеют добавить в нее свои объекты, то обученная на такой выборке модель будет ошибаться и выдавать неправильные результаты».