Технологии искусственного интеллекта помогут реабилитации бездомных
Исследовательская группа Центра искусственного интеллекта ФКН НИУ ВШЭ под руководством Ивана Ямщикова разработала модель для прогнозирования успешности реабилитации бездомных. С вероятностью около 80 процентов она предсказывает эффективность работы с клиентами организаций для бездомных.
Проект представлен на конференции, посвященной деятельности социальных центров. Сегодня проблема бездомности в России не изучена: не существует достоверной статистики о количестве таких людей в стране, крайне мало исследований на эту тему. Проект благотворительной организации «Ночлежка» и Лаборатории естественного языка ВШЭ — Яндекс в рамках программы Центра ИИ НИУ ВШЭ — это одна из первых попыток применить методы машинного обучения для изучения способов реабилитации бездомных.
В «Ночлежке» уже несколько лет работает электронная система МКС (Многофункциональный кабинет соцработника), в которую специалисты по социальной работе и юристы заносят информацию о сопровождении подопечных и оказанных услугах. Всего в базе данных 12 891 уникальный клиент. В исследовании Лаборатории естественного языка ВШЭ — Яндекс о прогнозировании исходов контрактов использована информация о 3219 клиентах, имеющих хотя бы один контракт. Обучение и проверка модели проходили на выборке из 6528 контрактов, заключенных с этими клиентами.
«Клиент» и «контракт» — термины Многофункционального кабинета соцработника. Под контрактом понимается услуга, которую может получить клиент МКС с участием соцработника. Всего таких контрактов (услуг) 43, например, временная регистрация по адресу «Ночлежки», восстановление или получение паспорта и другие.
«Первая задача, которую мы решали, — это предсказание успешности контракта, — рассказывает о ходе исследования Анна Быкова, аналитик Лаборатории естественного языка ВШЭ — Яндекс. — Для того, чтобы научить машину что-то делать, необходимо подготовить информацию. На основе комментариев базы данных кабинета соцработника “Ночлежки” мы выделили признаки по категориям клиентов. Также мы выбрали статусы контрактов, которые можно считать успешными (контракты выполнены полностью) и неуспешными (контракт не выполнен по причинам, связанным с клиентом)».
Каждый клиент был представлен в датасете строкой с 93 признаками, но, по мнению исследователей, «данных много не бывает». Любая информация помогает точнее спрогнозировать вероятность успешного завершения контракта, а это, в свою очередь, дает соцработникам больше возможностей помочь реальному человеку, попавшему в тяжелую жизненную ситуацию. Признаки загружались в модели машинного обучения.
Модель предсказывала вероятность успешного завершения того или иного контракта. Точность предсказаний модели при проверке составила 80 процентов. Самым сложным для выполнения оказался контракт «Получение гражданства», а самым реально выполнимым — «Временная регистрация по адресу “Ночлежки”».
Несмотря на эффективность работы искусственного интеллекта, исследователи подчеркивают важность человеческого фактора в принятии решений. «Мы даем инструмент, рассказываем, как им пользоваться, а то, как интерпретировать результат с этической стороны, — уже задача специалистов. Речь идет о людях, и решение принимает социальный работник», — поясняет Анна Быкова.
Ученые планируют совершенствовать модель с помощью подбора гиперпараметров, использования ансамблевых методов и различных архитектур нейросетей, проводить эксперименты с синтетическими данными, полученными в результате компьютерного моделирования. Также в планах — изучение данных других регионов, проверка гипотезы о влиянии гуманитарных проектов на дальнейшее обращение к социальным работникам.
«Мы хотим проверить гипотезу о том, что клиент, посетивший один из пунктов оказания гуманитарных услуг “Ночлежки” (пункт обогрева, “Ночной автобус”, “Ночной приют”, “Культурная прачечная” и пр.), с большей вероятностью примет решение “уйти с улицы” и обратиться за помощью к соцработникам. В терминах МКС это означает, что с ним будет связан хотя бы один “контракт”», — говорит аналитик Лаборатории естественного языка ВШЭ — Яндекс Николай Филиппов.