Войти в почту

Коммерциализация графеновых исследований в России

Наноматериалы Графен -- монослой атомов углерода, открытый всего несколько лет назад, стремительно завоевывает новые области применения. "Наука" предлагает обзор российских научно-технологических исследований и коммерческих применений графена и его производных. После того как в 2010 году наши соотечественники, работающие в Англии Андрей Гейм и Константин Новоселов, получили Нобелевскую премию за открытие графена, в мире развернулась графеновая научно-техническая гонка. В 2016 году было учтено 25 тыс. научно-технических публикаций по графену. Особенно масштабные научно-исследовательские работы финансируются в Китае, США и Южной Корее. Инновационные компании срочно включают графеновые продукты в свои стратегии. Наблюдается резкое снижение цен на графен. В частности, за 2010-2016 годы цена на монослойный графен, получаемый методом химического осаждения из газовой фазы, упала на три порядка и, как ожидается, в ближайшие годы еще снизится. Сходным образом за это же время упала цена на графеновый порошок и на графеновые наночастицы, сейчас для коммерческих материалов она составляет $250-300 за килограмм. Основные драйверы мирового научного рынка графена представлены в таблице на стр. 38 Из-за сравнительно высокой стоимости графена потреблять его способны только некоторые отрасли. В первую очередь те, где вклад графена в себестоимость экономически оправдан из-за огромной стоимости конечного продукта, например аэролайнера из композиционных материалов. И, разумеется, перспективны все миниатюрные устройства, где расход графена мал, например датчики окружающей среды и анатомические биосенсоры. Наука и графен в России В России исследователи графеновых материалов сконцентрированы примерно в 50 организациях, в основном в системе ФАНО. Перечень и научная тематика основных научных коллективов представлены в таблице на сайте "Науки". Так, в МФТИ в лаборатории нанооптики и плазмоники разрабатывают биосенсоры с использованием графена. Основные области применения продукта -- научные и фармацевтические исследования. Метод биодетектирования на основе технологии поверхностного плазмонного резонанса (Surface Plasmon Resonance, SPR), к которому относятся биосенсорные чипы, включен в европейские и американские регламенты по разработке лекарств. Графеновые биосенсоры перспективны для диагностики опасных заболеваний на ранних стадиях, контроля качества продуктов питания, мониторинга состояния окружающей среды и в ветеринарии. По мнению сотрудника лаборатории Юрия Стебунова, наиболее крупные потенциальные потребители биосенсорных чипов -- фармацевтические компании, центры тестирования лекарств и научные лаборатории. Ключевыми составляющими биосенсорных чипов являются металлические нанопленки и связующие слои на основе графена и оксида графена. Толщина металлических пленок составляет 30-50 нм, точность их напыления Важно, что биосенсорные чипы совместимы со всеми коммерческими безмаркерными SPR-биосенсорами и имеют в 30 раз более высокую чувствительность по сравнению с существующими аналогами. По состоянию на май 2017 года в МФТИ изготовлена тестовая партия графеновых биочипов в количестве 100 штук. В Якутске в лаборатории "Графеновые нанотехнологии" Северо-Восточного федерального университета разработаны технологии создания нескольких продуктов на основе графена. Как пояснила заведующая лабораторией Светлана Смагулова, лаборатория оснащена современным оборудованием, которое позволяет синтезировать графен, измерять его параметры и создавать электронные приборы на основе графена. Оксид-графеновые суспензии получают двумя методами: электрохимическим и модифицированным методом Хаммерса. Мелкими партиями продаются следующие продукты: · фторографеновые суспензии, · чернила для 2D-печати электронных структур на гибких подложках (оксид-графеновые, фторографеновые), · порошок оксида графена, · графеновые пленки, выращенные методом химического газофазного осаждения на медной пластине, · графеновые пленки, перенесенные на гибкую подложку для создания прозрачных проводящих электродов и сенсорных экранов смартфонов, · люминесцирующие углеродные квантовые точки, размерами 3-5 нм, синтезируемые гидротермальным методом для создания оптоэлектронных приборов, · сенсор влажности на основе графеновой пленки, · сенсор влажности на основе оксида графена. В Институте неорганической химии СО РАН выявлены закономерности изменения характеристик в серии новых малослойных графенов из соединений типа C2F-xR (интеркалятов фторграфита). Разработаны методики перевода графена в устойчивые дисперсии в жидких средах: нековалентная функционализация (обработка в полярных органических растворителях) и ковалентная функционализация за счет присоединения кислородных поверхностных групп. Разработаны методы получения азот-модифицированных графенов через взаимодействие интеркалятов типа C2F-xR с различными азотсодержащими реагентами и фторированного графена состава C2F с ковалентными C-F-связями. Старший научный сотрудник, кандидат химических наук Виктор Макотченко рассказал нам о том, что практическая значимость исследований состоит в целенаправленном получении новых материалов на основе графена, включая тонкие проводящие прозрачные пленки, прочную и гибкую "графеновую бумагу", композиты с высокой прочностью, катализаторы. В АО "НИИГрафит" исследованы методики получения суспензий малослойных графеновых частиц. Описаны многочисленные методики контроля качества соответствующих суспензий. Полученные данные свидетельствуют о технологичности метода, возможности его непрерывной организации для получения малослойных графеновых частиц с высоким выходом в виде стабильных водных и водно-спиртовых суспензий. Описаны общие методики определения свойств пьезодатчиков с графеновыми покрытиями. В 2015 году "НИИграфит" получил грант на разработку гибридных композиционных пьезодатчиков от российско-израильской программы. В проекте российский участник отвечает за графеновую технологию, израильский -- за пьезооснову датчиков. Обе стороны имеют технологические патенты, по результатам будет подана заявка на совместный патент. "Совместная электронная разработка обладает рядом принципиально новых свойств и найдет применение в тачскринах смартфонов, дисплеях современных компьютеров,-- говорит начальник отдела инновационного развития и перспективных разработок АО "НИИграфит" Владимир Самойлов.-- Хорошие перспективы у пьезодатчиков и в авиации -- транспортной, пассажирской, беспилотной. Первая их функция -- энергосберегающая. Энергию, выработанную в полете с помощью пьезодатчиков, можно использовать для освещения салона или антиобледенительного обогрева корпуса самолета. Вторая задача -- предупреждение аварийных ситуаций, применение в системах сигнализации о перегрузках, которые испытывает воздушное судно". Российские стартапы ООО "АкКо Лаб" (Москва), созданное в 2009 году, специализируется на разработке и изготовлении уникальных инновационных материалов. Компания ведет работы по следующим направлениям: 1. высокоэнергоемкий литий-ионный аккумулятор; 2. полностью углеродный суперконденсатор; 3. технологии изготовления элементов микроэлектронных устройств методом струйной 2D-печати чернилами, содержащими графен и функциональные наночастицы. ООО "АкКо Лаб" производит и продает образцы графена и оксида графена как в виде порошков ("чешуек"), так и в виде дисперсий в воде или в органических растворителях: 1. дисперсия оксида графена в воде (концентрация до 4 мг/мл), 2. графеновый порошок (размер чешуек примерно 2 мкм, их толщина 1-2 нм), 3. дисперсия графена в органических растворителях. В декабре 2016 года был распространен пресс-релиз о разработке тонкого конденсатора на основе оксида графена. Установлено, что гель из оксида графена имеет хорошую адгезию к большинству электропроводников. А пленки из оксида графена имеют достаточную прочность для формирования электрического сепаратора. Электроды сформированы из восстановленного оксида графена. То есть между двумя выходными электродами помещают оксид графена, а затем прилегающие к электродам слои оксида восстанавливают до графита. Созданы образцы конденсатора толщиной 3 мкм и емкостью 1 мФ/кв. см, работоспособного при напряжении до 1,5 В. Саморазряд таких конденсаторов зависит от качества и однородности пленок оксида графена. ООО "Русграфен" (Москва) создано в 2015 году при Институте общей физики РАН. Оно специализируется на производстве графена методом химического газофазного осаждения (CVD -- chemical vapor deposition) на подложку. В ассортименте продукции компании есть как монослои графена на меди, так и многослойные графеновые пленки на никеле, также имеются в продаже перенесенные монослойные и многослойные графеновые пленки на различные подложки с максимальным размером до 80 кв. см. Компания предлагает оборудование для синтеза графена методом химического газофазного осаждения -- это компактная вакуумная установка с возможностью синтезировать графен размером 20х30 мм на металле за 30 минут. В лаборатории спектроскопии наноматериалов, на базе которой организована компания, c 2009 года ведутся исследования графена, опубликовано более 15 научных работ в международных журналах. В наиболее интересных из них представлены результаты по созданию газовых сенсоров на основе CVD-графена, а также использование CVD-графена в качестве детектора терагерцового излучения и в качестве нелинейного оптического элемента для ультрабыстрых волноводных лазеров. ООО НПО "Графеновые материалы" (Санкт-Петербург) является производителем фторированных и малофункционализированных графеновых материалов, обладающих уникальными физико-химическими и технологическими свойствами и находящих применение в различных отраслях. Мультислойный графен производится из природных графитов различных марок и обладает степенью расширения графитовой решетки, значительно превышающей традиционные формы расширенного графита по методу Хаммерса. Мультислойный графен является основой для получения графеновых пластин. После ультразвуковой обработки в жидкой среде переходит в малослойный графен с толщиной частиц от 0,34 до 4 нм. Компанией предлагается мультислойный графен различной функционализации. ООО "Карболайт" (Долгопрудный) создано в 2004 году. Компания производит графен по модифицированному методу Хаммерса. Совместно с ООО "Конгран" ведется разработка суперконденсаторов. Пока производство невелико, но разработан проект полупромышленной установки. На конкурсе 2014 года, проведенном Федеральным агентством научных организаций и фондом "Сколково", проект "Конгран" занял второе место и был удостоен гранта в размере 5 млн руб. ООО "Нанотехцентр" (Тамбов) основано в 2006 году на базе Тамбовского государственного технического университета (ТГТУ) и ООО "Тамбовский инновационно-технологический центр машиностроения". Генеральным директором является доктор технических наук, профессор, академик РАЕН Алексей Ткачев. Совместная работа ТГТУ и ООО "Нанотехцентр" поддержана государственными грантами. Апробация продукции проводится более чем в 150 научных и производственных организациях в России и за рубежом. Ведется работа по созданию опытно-промышленной технологической линии с производительностью 5 кг в смену. Потребители графена в России Графеном уже заинтересовались инновационные подразделения и отделы перспективного бизнеса крупных российских корпораций. В частности, ООО "Новомосковсккабель-оптика" опробовало графен для создания покрытий оптоволокон. АО "ОНПП "Технология"" (Обнинск) применяло графеновые и графеноподобные материалы для повышения ударной прочности экспериментальных образцов карбидокремниевой брони для ударных вертолетов и военных шлемов. ПАО "Сатурн" (Краснодар) добавляло графен в солнечные панели. АО "Уралэлемент" (Верхний Уфалей) рассматривало графеновые наночастицы как добавки в состав литий-ионных аккумуляторов. Воронежское специальное конструкторское бюро "Рикон" разработало суперконденсаторы на основе графеновых электродов, однако промышленное внедрение пока так и не произошло. В августе 2017 года в Новосибирске состоится вторая Всероссийская конференция по графену. Основные темы: CVD-синтез графена, диагностика графена, графеновая электроника, механические свойства и приложения, микроэлектромеханические системы, химические производные графена: синтез, структура, свойства, электрохимические материалы, оптические свойства, а также гибридные материалы на основе графена. А в октябре в Минпромторговли РФ запланировано расширенное межотраслевое графеновое совещание. Несомненно, все это подстегнет коммерциализацию важнейшего научного открытия начала XXI века в области материалов -- графена. Владимир Тесленко, кандидат химических наук

Коммерциализация графеновых исследований в России
© Коммерсантъ Наука