«Повысить эффективность запусков»: почему Россия вернулась к созданию многоразовых ракет

Испытания российской многоразовой космической ракеты-носителя могут начаться уже в 2022 году. Свои усилия в работе над проектом объединили Роскосмос и Объединенная авиастроительная корпорация, сейчас уже готова предварительная техническая документация. Создать дешёвую многоразовую ракету в прошлом пытались и в США, и в СССР. Оба проекта оказались неудачными — каждый запуск обходился в астрономическую сумму. По мнению экспертов, у России сейчас достаточно опыта, кадров и технических средств, чтобы реализовать такой проект.

Почему РФ вернулась к созданию многоразовых ракет
© РИА Новости

Первая российская многоразовая возвращаемая космическая ракета будет испытана уже в 2022 году, сейчас над проектом ведут совместную работу специалисты «Роскосмоса» и Объединенной авиастроительной корпорации. Инженеры уже подготовили исходную техническую документацию для возвращаемого ракетного блока. Об этом рассказал глава проектной группы Фонда перспективных исследований (ФПИ) Борис Сатовский в интервью РИА Новости. Речь идёт о разработке отечественной многоразовой ракетной системы сверхлёгкого класса.

По замыслу конструкторов, первая ступень ракеты-носителя будет отделяться на высоте 59-66 километров и возвращаться на обычную полосу посадки в районе запуска.

«В базовой конструкции возвращаемого блока будут применены поворотное прямоугольное крыло большого размаха и классическое хвостовое оперение. При возвратном полете к месту старта используется модифицированный серийный турбореактивный двигатель», — отметил Сатовский.

Согласно проекту, возвращаемая ракета-носитель будет выводит на орбиту груз до 600 килограммов. Причём обходится такой запуск будет в полтора-два раза дешевле, чем в случае запуска невозвращаемой ракеты аналогичного класса, отметил учёный. Запуск будет производится с мобильных комплексов.

Предполагается, что каждая такая ракета сможет осуществить порядка 50 полётов, только после этого ей потребуется замена основного двигателя. Двигатели ракеты будут работать на криогенном топливе — его получают путём сжатия газов в условиях глубокого охлаждения.

Как пояснил Сатовский, при разработке ракеты конструкторы изучили технические решения, применённые в своё время в проекте многоразового ускорителя «Байкал».

Дорогое удовольствие

Проект многоразового ускорителя «Байкал» для первой ступени ракеты-носителя «Ангара» был разработан ГКНПЦ имени Хруничева и НПО «Молния» в начале 2000-х годов. По замыслу разработчиков после выполнения своей задачи ускоритель должен вернуться на обычную самолётную взлётно-посадочную полосу по принципу беспилотного летательного аппарата.

Макет проекта был представлен международным экспертам ещё в 2001 году на авиакосмическом салоне в Ле Бурже. Как рассказал тогда прессе представитель ГКНПЦ им. М.В.Хруничева, хотя аналогичные разработки велись в ряде стран, России удалось на тот момент продвинуться в них дальше всех.

Существует также альтернативный проект ракеты-носителя «Россиянка», разрабатываемой ГРЦ им. Макеева. В 2011 году «Роскосмос» разместил заказ на разработку эскизного проекта «многоразовой ракетно-космической системы первого этапа» — МРКС-1.

«Такая система выведения (многоразовая. — RT), по нашему мнению, экономически обоснована и перспективна. Мы работаем над устранением недостатков многоразовых космических кораблей, разработанных ранее, — их высокой стоимостью межполётного обслуживания и тяжелой теплозащитой», — цитировали «Известия» слова замгендиректора «Центра Хруничева».

В конкурсе приняли участие два проекта: ракеты-носителя «Россиянка», разрабатываемой ГРЦ им. Макеева, и «Байкал-Ангара» ГКНПЦ им. Хруничева, который в итоге и выиграл тендер. Однако впоследствии проект не получил развития, отмечают эксперты.

Эволюция многоразовых ракет-носителей продолжается уже около полувека. Ещё в 1976 году в СССР был начат проект по разработке многоразовой транспортной ракеты «Энергия—Буран», однако в начале 1990-х годов программа была закрыта — её единственным детищем стал запуск корабля «Буран» в 1988 году.

Не слишком удачным оказался и американский проект по созданию многоразовой одноступенчатой ракеты Delta Clipper — начавшая разработку в 1990-х компания McDonnell Douglas была впоследствии вынуждена свернуть программу.

Более успешной оказалась начатая НАСА в 1960-х годах программа «Космическая транспортная система», в рамках которой были созданы многоразовые транспортные космические корабли Space Shuttle. Изначально планировалось, что каждый из шести построенных «Шаттлов» произведёт порядка 100 полётов к орбите. Однако на практике удалось произвести суммарно только 135 запусков. В 2011 году эксплуатация «Шаттлов» была прекращена: каждый запуск обходился дороже, чем доставка грузов одноразовыми ракетами «Протон».

Космическая эволюция

Тем не менее поиски более совершенных технических решений, которые позволят перейти к возвращаемым ракетам, продолжились. В США соответствующими разработками занимается, преимущественно, компания SpaceX. В конце 2015 года её специалистам удалось впервые посадить первую ступень ракеты-носителя Falcon 9. Однако её повторное использование было исключено — слишком сильны оказались повреждения. Впервые совершить повторный запуск удалось в марте 2017 года. А в феврале 2018 года во время испытательного запуска ракета-носитель Falcon Heavy SpaceX отправила в космос электромобиль Tesla Roadster.

По замыслу главы компании Илона Маска, после того, как технология будет поставлена «на поток», один запуск будет обходится всего в $43 млн. Для сравнения, цена одной ракеты Atlas 5 компании United Launch Alliance колеблется от $109 млн до $157 млн в зависимости от класса. Для «Шаттла» цена одного запуска достигает и вовсе $500 млн.

Сейчас в компании думают над технологиями возврата второй ступени ракеты. Среди различных вариантов рассматривается и использование гигантского воздушного шара.

В России также продолжаются работы по созданию и совершенствованию многоразовых средств выведения. В 2016 году профильный департамент был создан в Центре имени Хруничева. По словам экспертов, есть целый перечень факторов, благодаря которым сегодня создание многоразовых ракет стало возможным.

Колоссальный прогресс за последние десятилетия был достигнут в сфере создания новых материалов — это имеет ключевое значение при конструировании ракет, сталкивающихся с экстремальными космическими нагрузками.

4 июня стало известно о том, что учёным из Дальневосточного федерального университета (ДВФУ) и ДВО РАН удалось создать материал с рекордной температурой плавления.

До сих пор самым тугоплавким материалом считался карбид тантала-гафния, который плавится при температуре 4200 градусов по шкале Кельвина. Это максимально высокая температура, которую могут определить измерительные приборы. Однако предсказанная тугоплавкость нового материала превосходит этот показатель на 200 К.

Опытный образец этого материала был получен в экстремальных условиях синтеза смеси порошков карбида и нитрида гафния, по словам разработчиков, он может найти применение как в термоядерной энергетике, так и в аэрокосмическом строении.

«Новые материалы создаются постоянно, они в корне отличаются от тех материалов, которые использовались тридцать лет назад, технологии совершенствуются. Говорить о прорывах я бы не стал, это, скорее, рутинная работа, которая ведется постоянно и будет вестись дальше», — пояснил в интервью RT академик Российской академии космонавтики Александр Железняков.

Говоря о причинах прошлых неудач в сфере создания многоразовых носителей, эксперт отметил, что несмотря на кажущуюся простоту, реализовать такое техническое решение непросто. Особую сложность, к примеру, представляет само возвращение использованных ступеней — пробуется как спуск с парашютом, так и планирование.

«Сейчас над созданием многоразовых ракет работает далеко не один Илон Маск, аналогичные разработки ведутся в Китае, в Европе тоже об этом задумываются. Мы тоже не можем оказаться на обочине научно-технического прогресса», — пояснил эксперт.

Возвращение и США, и России к идее создания таких ракет вполне логично — использование многоразовой космической техники, конечно, повышает эффективность космических запусков, подчеркнул эксперт.

Похожей точки зрения придерживается и ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. Эксперт напомнил, что в «Шаттле» возвращаемой была только та часть, которая выводилась на орбиту вместе с экипажем. Планировалось, что такой вариант запусков будет дешевле, однако эти надежды не оправдались.

По словам учёного, аналогичный российский проект закончился примерно так же: был успешно запущен один «Буран», но цена таких запусков оказалась слишком высокой. Кроме того, всем хотелось вернуть и стартовые ступени, особенно первую.

«Для создания таких технологий нужно много времени. Если говорить именно о технических составляющих, кадрах, опыте, мы вполне можем реализовать такой проект, здесь нет никаких сомнений», — подвёл итог Натан Эйсмонт.