Сделан материал для энергонезависимой памяти

Учёные из Института физики полупроводников имени Ржанова С. О. РАН, Новосибирского государственного университета, Новосибирского государственного технического университета и Национального университета Чао Тунг (Тайвань) разработали и сравнили мемристоры на основе нитрида кремния, синтезированные с помощью двух разных технологий.

Сделан материал для энергонезависимой памяти
© Популярная механика

Более высокопроизводительное устройство удалось получить, используя технологию физического осаждения из газовой фазы. Существенное преимущество нитрида кремния перед другими материалами для энергонезависимой памяти - совместимость с традиционным способом производства интегральных схем. Применение нового типа памяти позволит увеличить быстродействие компьютеров, гаджетов, проводить большее количество операций в единицу времени, снизив при этом потребление энергии.

Учёные обнаружили, что свойства полностью неметаллической резистивной памяти на основе нитрида кремния SINx переменного состава (нестехиометрического) сильно зависят от технологии синтеза последнего. Выращиванием материала занимались специалисты из Тайваня, и они впервые использовали метод физического осаждения, который показал хорошие результаты. Например, время хранения информации на микроэлектронном компоненте, полученном с помощью PVD в 100 раз больше, чем с помощью плазменно-химического осаждения из газовой фазы (PECVD).

Методы синтеза PVD и PECVD предполагают разные способы создания материалов нужного состава. В первом случае твёрдые вещества нагреваются до получения газовой фазы, и затем, в условиях высокого вакуума атомы этих веществ, например, кремния и азота осаждаются на подложке, образуя тончайшую пленку в данном случае — нитрида кремния. В другом методе PECVD — плазменно-химическом осаждении из газовой фазы — молекулы осаждаемых материалов содержатся в газовой смеси, а для их разложения на свободные радикалы используется высокочастотный плазменный разряд.

Так как обычно для получения нитрида кремния используются содержащие водород газы — моносилан (SiH4) и аммиак (NH3), то формирующаяся тонкая плёнка нитрида кремния содержит водород в виде Si-H и N-H связей, и концентрация водорода тем выше, чем ниже температура подложки в процессе осаждения. Работы по созданию энергонезависимой резистивной памяти интенсивно ведутся во всем мире, поскольку её характеристики существенно превышают те, что есть у распространенной сейчас флэш-памяти. Однако до сих пор в качестве перспективных материалов для RRAM исследовались преимущественно оксиды металлов.

Мемристор – элемент наноэлектроники, изменяющий своё сопротивление в зависимости от протекшего через него электрического заряда. Благодаря этому можно использовать изменение напряжения для перезаписи и считывания информации на мемристоре. Сейчас для записи информации используются транзисторы. Мемристор может выступать не только как ячейка памяти, но и как аналог синапса — контакта между двумя нейронами или нейроном и другими возбудимыми клетками.

Каждый нейрон связывается с большим количеством своих «собратьев», при этом «сила» взаимодействия в каждом случае отличается и может меняться с течением времени. Подобный механизм передачи сигналов можно сформировать и с помощью мемристоров. Это, в свою очередь, делает мемристорные системы перспективными для создания компьютеров, работающих по принципу человеческого мозга.